Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38258101

RESUMO

The current study aimed to fabricate curcumin-loaded bilosomal hydrogel for topical wound healing purposes, hence alleviating the poor aqueous solubility and low oral bioavailability of curcumin. Bilosomes were fabricated via the thin film hydration technique using cholesterol, Span® 60, and two different types of bile salts (sodium deoxycholate or sodium cholate). Bilosomes were verified for their particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE%), and in vitro drug release besides their morphological features. The optimum formulation was composed of cholesterol/Span® 60 (molar ratio 1:10 w/w) and 5 mg of sodium deoxycholate. This optimum formulation was composed of a PS of 246.25 ± 11.85 nm, PDI of 0.339 ± 0.030, ZP of -36.75 ± 0.14 mv, EE% of 93.32% ± 0.40, and the highest percent of drug released over three days (96.23% ± 0.02). The optimum bilosomal formulation was loaded into alginate dialdehyde/chitosan hydrogel cross-linked with calcium chloride. The loaded hydrogel was tested for its water uptake capacity, in vitro drug release, and in vivo studies on male Albino rats. The results showed that the loaded hydrogel possessed a high-water uptake percent at the four-week time point (729.50% ± 43.13) before it started to disintegrate gradually; in addition, it showed sustained drug release for five days (≈100%). In vivo animal testing and histopathological studies supported the superiority of the curcumin-loaded bilosomal hydrogel in wound healing compared to the curcumin dispersion and plain hydrogel, where there was a complete wound closure attained after the three-week period with a proper healing mechanism. Finally, it was concluded that curcumin-loaded bilosomal hydrogel offered a robust, efficient, and user-friendly dosage form for wound healing.

2.
Eur J Pharm Sci ; 192: 106659, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052258

RESUMO

Statins have been long used in tissue engineering, besides their marketed hypolipidemic benefits. The aim of this research was to sustain the release of rosuvastatin calcium from bi-polymeric hydrogel scaffolds. A bi-polymer blend technique was used to enhance the mechanical properties of the fabricated hydrogels. Briefly, hydrogels were prepared via crosslinking gellan gum as the main polymer together with a secondary polymer in the presence of Ca2+. The fabricated hydrogels were assessed in terms of % swelling capacity, hydrolytic degradation and % drug released to determine the most efficient carrier system. The selected hydrogel exhibited a swelling capacity of 131.45±1.49 % following 3 weeks in an aqueous environment with a % weight loss of 15.73±1.86 % after 4 weeks post-equilibrium in aqueous medium. The results ensure a proper window for adequate drug diffusion and nutrient exchange. Sustained release was attained where 94.61±2.77 % of rosuvastatin was released at the 4-week mark. Later, FT-IR and DSC, were carried out and suggested the successful crosslinking and formation of new matrix. SEM images demonstrated the porous surface of the hydrogel while a Young's modulus of 888.558±73.549 kPa indicated the suitability of the hydrogel for soft tissue engineering. In-vivo testing involved implanting the selected hydrogel at precisely surgical cuts in the Achilles tendon of male Wistar Albino rats. Upon visual and microscopic evaluation, enhanced rates of fibrous tissue formation, vascularization and collagen expression were clearly noticed in the treatment group.


Assuntos
Hidrogéis , Polissacarídeos Bacterianos , Ratos , Animais , Masculino , Rosuvastatina Cálcica , Espectroscopia de Infravermelho com Transformada de Fourier , Tendões , Ratos Wistar , Colágeno , Tecidos Suporte
3.
Pharmaceutics ; 15(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38140079

RESUMO

Cellulose, the most abundant biopolymer in nature, is derived from various sources. The production of pharmaceutical textiles based on cellulose represents a growing sector. In medicated textiles, textile and pharmaceutical sciences are integrated to develop new healthcare approaches aiming to improve patient compliance. Through the possibility of cellulose functionalization, pharmaceutical textiles can broaden the applications of cellulose in the biomedical field. This narrative review aims to illustrate both the methods of extraction and preparation of cellulose fibers, with a particular focus on nanocellulose, and diverse pharmaceutical applications like tissue restoration and antimicrobial, antiviral, and wound healing applications. Additionally, the merging between fabricated cellulosic textiles with drugs, metal nanoparticles, and plant-derived and synthetic materials are also illustrated. Moreover, new emerging technologies and the use of smart medicated textiles (3D and 4D cellulosic textiles) are not far from those within the review scope. In each section, the review outlines some of the limitations in the use of cellulose textiles, indicating scientific research that provides significant contributions to overcome them. This review also points out the faced challenges and possible solutions in a trial to present an overview on all issues related to the use of cellulose for the production of pharmaceutical textiles.

4.
Int J Pharm X ; 6: 100213, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37927584

RESUMO

Bones are subject to different types of damages ranging from simple fatigue to profound defects. In serious cases, the endogenous healing mechanism is not capable of healing the damage or restoring the normal structure and function of the bony tissue. The aim of this research was to achieve a sustained delivery of rosuvastatin and assess its efficacy in healing bone tissue damage. Rosuvastatin was entrapped into silica nanoparticles and the system was loaded into an alginate hydrogel to be implanted in the damaged tissue. Silica nanoparticles were formulated based on a modified Stöber technique and alginate hydrogel was prepared via sprinkling alginate onto silica nanoparticle dispersion followed by addition of CaCl2 to promote crosslinking and hydrogel rigidification. The selected nanoparticle formulation possessed high % drug content (100.22±0.67%), the smallest particle size (221.00±7.30 nm) and a sustained drug release up to 4 weeks (98.72±0.52%). The fabricated hydrogel exhibited a further delay in drug release (81.52±4.81% after 4 weeks). FT-IR indicated the silica nanoparticle formation and hydrogel crosslinking. SEM visualized the porous and dense surface of hydrogel. In-vivo testing on induced bone defects in New Zealand rabbits revealed the enhanced rate of new bone tissue formation, its homogeneity in color as well as similarity in structure to the original tissue.

5.
Biomater Sci ; 11(18): 6280-6286, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37548917

RESUMO

Stimuli-responsive transformable biomaterials development can be manipulated practically by fine-tuning the built-in molecular design of their structural segments. Here, we demonstrate a peptide assembly by the bola-type amphiphilic polypeptide, glycolic acid-polysarcosine (PSar)13-b-(L-Leu-Aib)6-b-PSar13-glycolic acid (S13L12S13), which shows morphological transformations between hydrophilic chain-driven and hydrophobic unit-driven morphologies. The hydrophobic α-helical unit (L-Leu-Aib)6 precisely controls packing in the hydrophobic layer of the assembly and induces tubule formation. The densified, hydrophilic PSar chain on the assembly surface becomes slightly more hydrophobic as the temperature increases above 70 °C, starting to disturb the helix-helix interaction-driven formation of tubules. As a result, the S13L12S13 peptide assembly undergoes a reversible vesicle-nanotube transformation following a time course at room temperature and a heat treatment above 80 °C. Using membrane fluidity analysis with DPH and TMA-DPH and evaluating the environment surrounding the PSar side chain with NMR, we clarify that the vesicle was in a kinetically stable state driven by the dehydrated PSar chain, while the nanotube was in a thermodynamically stable state.


Assuntos
Glicolatos , Peptídeos , Peptídeos/química , Sarcosina/química
6.
Pharmaceutics ; 15(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36839855

RESUMO

Rasagiline mesylate (RSM) is a hydrophilic drug with poor oral bioavailability (36%) because of hepatic first-pass metabolism. The present study focuses on delivering RSM directly to the brain through its inclusion within transferosomal in situ gel administered through the intranasal (IN) route. Transferosomes were formed by the thin-film hydration method with the aid of Design-Expert® software by varying the edge activator (EA) type in the absence or presence of cholesterol. By desirability calculations, the optimum formulation was composed of phosphatidylcholine and sodium deoxycholate as an EA (5:1% w/w) with no cholesterol. The optimum formulation was 198.63 ± 34.98 nm in size and displayed an entrapment efficiency of 95.73 ± 0.09%. Transmission electron microscopy revealed discrete and spherical vesicles. Optimized transferosomes were further incorporated into an in situ gel composed of 0.5% pectin, 15% Pluronic® F-127, and 5% Pluronic® F-68 and tested for the in vivo performance. The systemic as well as brain kinetics were assessed in rats by comparing the IN-administered in situ gel to the IV aqueous solution. The optimum in situ gel showed safety and biocompatibility on rats' nasal mucosa with enhanced brain bioavailability (131.17%). Drug targeting efficiency and direct transport percentage indices (304.53% and 67.16%, respectively) supported successful brain targeting offering direct nose-to-brain drug delivery.

7.
AAPS PharmSciTech ; 23(7): 267, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163568

RESUMO

Tissue engineering has emerged as an interesting field nowadays; it focuses on accelerating the auto-healing mechanism of tissues rather than organ transplantation. It involves implanting an In Vitro cultured initiative tissue or a scaffold loaded with tissue regenerating ingredients at the damaged area. Both techniques are based on the use of biodegradable, biocompatible polymers as scaffolding materials which are either derived from natural (e.g. alginates, celluloses, and zein) or synthetic sources (e.g. PLGA, PCL, and PLA). This review discusses in detail the recent applications of different biomaterials in tissue engineering highlighting the targeted tissues besides the in vitro and in vivo key findings. As well, smart biomaterials (e.g. chitosan) are fascinating candidates in the field as they are capable of elucidating a chemical or physical transformation as response to external stimuli (e.g. temperature, pH, magnetic or electric fields). Recent trends in tissue engineering are summarized in this review highlighting the use of stem cells, 3D printing techniques, and the most recent 4D printing approach which relies on the use of smart biomaterials to produce a dynamic scaffold resembling the natural tissue. Furthermore, the application of advanced tissue engineering techniques provides hope for the researchers to recognize COVID-19/host interaction, also, it presents a promising solution to rejuvenate the destroyed lung tissues.


Assuntos
COVID-19 , Quitosana , Zeína , Alginatos , Materiais Biocompatíveis , Humanos , Poliésteres , Polímeros , Impressão Tridimensional , Engenharia Tecidual/métodos , Tecidos Suporte
8.
Drug Deliv ; 29(1): 2117-2129, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35838555

RESUMO

The eye is an invulnerable organ with intrinsic anatomical and physiological barriers, hindering the development of a pioneer ocular formulation. The aim of this work was to develop an efficient ocular delivery system that can augment the ocular bioavailability of the antifungal drug, terconazole. Mesoporous silica microparticles, Syloid® 244 FP were utilized as the carrier system for terconazole. Preliminary studies were carried out using different drug:Syloid® weight ratios. The optimum weight ratio was mixed with various concentrations (30 and 60%w/w) of poly (lactic-co-glycolic acid) (PLGA), ester or acid-capped and with different monomers-ratio (50:50 and 75:25) using the nano-spray dryer. Results revealed the superiority of drug:Syloid® weight ratio of 1:2 in terms of yield percentage (Y%), SPAN and drug content percentage (DC%). Furthermore, incorporation of PLGA with lower glycolic acid monomer-ratio significantly increased Y%. In contrast, increasing the glycolic acid monomer-ratio resulted in higher DC% and release efficiency percentage (RE%). Additionally, doubling PLGA concentration significantly reduced Y%, DC%, drug loading percentage (DL%) and RE%. Applying desirability function in terms of increasing DC%, DL% besides RE% and decreasing SPAN, the selected formulation was chosen for DSC, XRD and SEM investigations. Results confirmed the successful loading of amorphized terconazole on PLGA-modified Syloid® microparticles. Moreover, pharmacokinetic studies for the chosen formulation on male Albino rabbits' eyes revealed a 2, 6.7 and 25.3-fold increase in mean residence time, Cmax and AUC0-24-values, respectively, compared to the drug suspension. PLGA-modified Syloid® microparticles represent a potential option to augment the bioavailability of ocular drugs.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Animais , Portadores de Fármacos , Masculino , Microesferas , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Coelhos , Triazóis
9.
Drug Deliv ; 29(1): 1549-1570, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35612293

RESUMO

Microfluidics is used to manipulate fluid flow in micro-channels to fabricate drug delivery vesicles in a uniform tunable size. Thanks to their designs, microfluidic technology provides an alternative and versatile platform over traditional formulation methods of nanoparticles. Understanding the factors that affect the formulation of nanoparticles can guide the proper selection of microfluidic design and the operating parameters aiming at producing nanoparticles with reproducible properties. This review introduces the microfluidic systems' continuous flow (single-phase) and segmented flow (multiphase) and their different mixing parameters and mechanisms. Furthermore, microfluidic approaches for efficient production of nanoparticles as surface modification, anti-fouling, and post-microfluidic treatment are summarized. The review sheds light on the used microfluidic systems and operation parameters applied to prepare and fine-tune nanoparticles like lipid, poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles as well as cross-linked nanoparticles. The approaches for scale-up production using microfluidics for clinical or industrial use are also highlighted. Furthermore, the use of microfluidics in preparing novel micro/nanofluidic drug delivery systems is presented. In conclusion, the characteristic vital features of microfluidics offer the ability to develop precise and efficient drug delivery nanoparticles.


Assuntos
Microfluídica , Nanopartículas , Tecnologia Farmacêutica
10.
Pharmaceutics ; 14(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35335847

RESUMO

This research assesses the beneficial effects of loading terconazole, a poorly water-soluble antifungal drug in silica/chitosan nanoparticles (SCNs) for ocular delivery. Nanoparticles were fabricated by the simple mixing of tetraethyl ortho silicate (TEOS) and chitosan HCl as sources of silica and nitrogen, respectively, along with alcoholic drug solution in different concentrations. Freeze-dried nanoparticles were fabricated using cyclodextrins as cryoprotectants. SCNs were assessed for their particle size, PDI, yield, drug loading and in vitro release studies. A 23.31 full factorial experimental design was constructed to optimize the prepared SCNs. DSC, XRD, FTIR, in addition to morphological scanning were performed on the optimized nanoparticles followed by an investigation of their pharmacokinetic parameters after topical ocular application in male Albino rabbits. The results reveal that increasing the water content in the preparations causes an increase in the yield and size of nanoparticles. On the other hand, increasing the TEOS content in the preparations, caused a decrease in the yield and size of nanoparticles. The optimized formulation possessed excellent mucoadhesive properties with potential safety concerning the investigated rabbit eye tissues. The higher Cmax and AUC0-24 values coupled with a longer tmax value compared to the drug suspension in the rabbits' eyes indicated the potential of SCNs as promising ocular carriers for poorly water-soluble drugs, such as terconazole.

11.
Pharmaceutics ; 14(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35214007

RESUMO

In situ forming implants (IFIs) are non-surgical approach using biodegradable polymers to treat bone fractures. The study aimed at preparing dual-drug-loaded IFIs to deliver pitavastatin (osteogenic drug) and tedizolid (antibiotic) using zein as the implant matrix via solvent-induced phase inversion method. At first, several investigations were done on pitavastatin-loaded zein IFIs, where three concentrations of zein were used (10, 20, and 30% w/v). IFIs were evaluated for their solidification time, rheological properties, injectability, and in vitro release. IFIs containing bioactive glass nanoparticles were prepared by the addition of non-doped bioactive glass nanoparticles (BGT0; 1, 3, 5, and 10% w/v) or titanium-doped bioactive glass nanoparticles (BGT5; 1% w/v) to the selected concentration of zein (30% w/v) and then evaluated. The optimized dual-medicated implant (D-ZIFI 1) containing pitavastatin, tedizolid, sodium hyaluronate (3% w/v), and BGT5 (1% w/v) was prepared and compared to IFI lacking both sodium hyaluronate and BGT5 (D-ZIFI 2). D-ZIFI 1 and 2 sustained the release profiles of both drugs for 28 days. SEM images proved the interconnected porous structure of D-ZIFI 1 due to sodium hyaluronate. In vivo studies on surgically induced bone defects in Sprague-Dawley rats signified the proper accelerated bone healing ability of D-ZIFI 1 over D-ZIFI 2. Results presented D-ZIFI 1 as a promising, effective, non-surgical approach for bone healing.

12.
Pharmaceutics ; 14(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35214038

RESUMO

Tissue regeneration is an auto-healing mechanism, initiating immediately following tissue damage to restore normal tissue structure and function. This falls in line with survival instinct being the most dominant instinct for any living organism. Nevertheless, the process is slow and not feasible in all tissues, which led to the emergence of tissue engineering (TE). TE aims at replacing damaged tissues with new ones. To do so, either new tissue is being cultured in vitro and then implanted, or stimulants are implanted into the target site to enhance endogenous tissue formation. Whichever approach is used, a matrix is used to support tissue growth, known as 'scaffold'. In this review, an overall look at scaffolds fabrication is discussed, starting with design considerations and different biomaterials used. Following, highlights of conventional and advanced fabrication techniques are attentively presented. The future of scaffolds in TE is ever promising, with the likes of nanotechnology being investigated for scaffold integration. The constant evolvement of organoids and biofluidics with the eventual inclusion of organ-on-a-chip in TE has shown a promising prospect of what the technology might lead to. Perhaps the closest technology to market is 4D scaffolds following the successful implementation of 4D printing in other fields.

13.
Pharmaceutics ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36678665

RESUMO

Curcumin or turmeric is the active constituent of Curcuma longa L. It has marvelous medicinal applications in many diseases. When the skin integrity is compromised due to either acute or chronic wounds, the body initiates several steps leading to tissue healing and skin barrier function restoration. Curcumin has very strong antibacterial and antifungal activities with powerful wound healing ability owing to its antioxidant activity. Nevertheless, its poor oral bioavailability, low water solubility and rapid metabolism limit its medical use. Tailoring suitable drug delivery systems for carrying curcumin improves its pharmaceutical and pharmacological effects. This review summarizes the most recent reported curcumin-loaded delivery systems for wound healing purposes, chiefly hydrogels, films, wafers, and sponges. In addition, curcumin nanoformulations such as nanohydrogels, nanoparticles and nanofibers are also presented, which offer better solubility, bioavailability, and sustained release to augment curcumin wound healing effects through stimulating the different healing phases by the aid of the small carrier.

14.
Pharmaceutics ; 13(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34834242

RESUMO

This study aimed at delivering intranasal zolmitriptan directly to the brain through preparation of bilosomes incorporated into a mucoadhesive in situ gel with extended nasal mucociliary transit time. Zolmitriptan-loaded bilosomes were constructed through a thin film hydration method applying Box-Behnken design. The independent variables were amount of sodium deoxycholate and the amount and molar ratio of cholesterol/Span® 40 mixture. Bilosomes were assessed for their entrapment efficiency, particle size and in vitro release. The optimal bilosomes were loaded into mucoadhesive in situ gel consisting of poloxamer 407 and hydroxypropyl methylcellulose. The systemic and brain kinetics of Zolmitriptan were evaluated in rats by comparing intranasal administration of prepared gel to an IV solution. Statistical analysis suggested an optimized bilosomal formulation composition of sodium deoxycholate (5 mg) with an amount and molar ratio of cholesterol/Span® 40 mixture of 255 mg and 1:7.7, respectively. The mucoadhesive in situ gel containing bilosomal formulation had a sol-gel temperature of 34.03 °C and an extended mucociliary transit time of 22.36 min. The gelling system possessed enhanced brain bioavailability compared to bilosomal dispersion (1176.98 vs. 835.77%, respectively) following intranasal administration. The gel revealed successful brain targeting with improved drug targeting efficiency and direct transport percentage indices. The intranasal delivery of mucoadhesive in situ gel containing zolmitriptan-loaded bilosomes offered direct nose-to-brain drug targeting with enhanced brain bioavailability.

15.
Int J Nanomedicine ; 16: 6807-6824, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675509

RESUMO

PURPOSE: TEMPO-oxidized nanofibrillated cellulose (TONFC) originating from an agricultural waste (sugar cane) was utilized to prepare injectable in-situ forming hydrogel scaffolds (IHS) for regenerative medicine. METHODS: TONFC was prepared and characterized for its morphology and chemical structure using TEM and FT-IR, respectively. The cold method was applied to prepare hydrogels. Various concentrations of poloxamer 407 were added to the prepared TONFC (0.5%w/w). Different sources of calcium, Fujicalin® (DCP) or hydroxyapatite (TCP), were used to formulate the aimed calcium-enriched raloxifene hydrochloride-loaded IHS. Gelation temperature, drug content, injectability and in-vitro drug release were evaluated along with the morphological characters. Cytocompatibility studies and tissue regeneration properties were assessed on Saos-2 cells. RESULTS: TEM photograph of TONFC showed fibrous nanostructure. The selected formulation "Ca-IHS4" composed of TONFC+15% P407+10% TCP showed the most prolonged release pattern for 12 days with the least burst effect (about 25% within 24 h). SEM micro-photographs of the in-situ formed scaffolds showed a highly porous 3D structure. Cytocompatibility studies of formulation "Ca-IHS4" revealed the biocompatibility as well as improved cell adhesion, alkaline phosphatase enzyme activity and calcium ion deposition. CONCLUSION: The outcomes suggest that Ca-IHS4 presents a simple, safe-line and non-invasive strategy for bone regeneration.


Assuntos
Hidrogéis , Cloridrato de Raloxifeno , Cálcio , Celulose , Poloxâmero , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual , Tecidos Suporte
16.
Food Funct ; 12(11): 4738-4748, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100507

RESUMO

Mucilage is a soluble dietary fiber used as a food additive to give foods a firmer texture, aside from its many health benefits and pharmacological properties. It is a polysaccharide in nature, composed of large molecules of sugars and uronic acid moieties. The extraction of mucilage is achieved from a wide variety of plant parts, including rhizomes, roots, and seeds, and it has also been reported from microorganisms. In this review, the nutritional and medicinal applications of mucilage are described in the context of the different mucilage types. The current article highlights state-of-the-art valorization practices relating to mucilage and its potential novel usages in the food industry and nutraceuticals, and as a prebiotic, in addition to its nutritional and anti-nutritional values. Analysis of the prebiotic action of mucilage with respect to its structure activity relationship, as well as how it modulates gut bacteria, is presented for the first time and in the context of its known health benefits inside the colon. It is recommended that more investigations are carried out to maximize the health benefits of mucilage and ensure its safety, especially upon long-term usage.


Assuntos
Coloides , Suplementos Nutricionais , Alimento Funcional , Mucilagem Vegetal/química , Prebióticos , Valor Nutritivo
17.
Eur J Pharm Sci ; 164: 105888, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34044118

RESUMO

The goal of this research was to evaluate the beneficial effects of topical curcumin loaded freeze-dried wafers in wound healing. Curcumin wafers were fabricated by cross-linking of chitosan with beta glycerophosphate under magnetic stirring. Composite wafers were prepared by the addition of sodium hyaluronate. Wafers were fabricated by freeze-drying technique. The resulted wafers were examined by naked eye and their dimensions were measured using a caliper. % Drug content, in-vitro release and % water uptake tests were conducted to characterize the fabricated wafers. Porosity testing, compressive mechanical behavior, morphological examination using scanning electron microscopy, thermal behavior using differential scanning calorimetry and Fourier transform infrared spectroscopy were all carried out on the optimized cross-linked wafers followed by their microbiological assays and cytotoxicity studies. The results showed that the optimized wafers possessed high water uptake capabilities while entertaining very high porosity levels (86-89%). Microbiological assay revealed the superiority of the selected curcumin wafers versus free curcumin in bacterial growth inhibition against Staphylococcus epidermidis and Staphylococcus aureus (MRSA) bacteria. The anti-inflammatory effects of the selected curcumin wafers were evaluated against pro-inflammatory cytokines. The results suggested that they were significantly better than free curcumin in lowering cytokines levels. To conclude, the obtained findings revealed that curcumin wafers offered a promising solution in the field of wound healing.


Assuntos
Quitosana , Curcumina , Liofilização , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Cicatrização
18.
Int J Nanomedicine ; 16: 2667-2687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854314

RESUMO

PURPOSE: The goal was to directly deliver curcumin, a natural polyphenolic anticancer and anti-inflammatory compound, to the lung tissues with minimal systemic exposure through the fabrication of proliposomes, overcoming its poor aqueous solubility and oral bioavailability. METHODS: Nano-spray drying was employed to prepare proliposomes using hydroxypropyl beta-cyclodextrin as a carrier. Lecithin and cholesterol were used as lipids, stearylamine and Poloxamer 188 were added as positive charge inducer and a surfactant, respectively. Different characterization parameters were evaluated like percentage yield, entrapment efficiency, drug loading, aerodynamic particle size, in vitro release besides morphological examination. Cytotoxicity studies on cell line A549 lung tumor cells as well as in vivo lung pharmacokinetic studies were also carried. RESULTS: The optimized formulations showed superior aerosolization properties coupled their enhanced ability to reach deep lung tissues with a high % of fine particle fraction. Cytotoxicity studies using MTT assay demonstrated enhanced growth inhibitory effect on lung tumor cells A549 and significant reduction of proinflammatory cytokines such as tumor necrosis factor-α, interleukin-6 and interleukin-10 compared to the pure drug. Results of lung pharmacokinetic tests confirmed the superiority of proliposomal curcumin over curcumin powder in both, the rate and extent of lung tissue absorption, as well as the mean residence time within the lung tissues. CONCLUSION: The pulmonary delivery of curcumin-loaded proliposomes as dry powder provides a direct approach to lung tissues targeting while avoiding the limitations of the oral route and offering a non-invasive alternative to the parenteral one.


Assuntos
Curcumina/administração & dosagem , Curcumina/farmacologia , Sistemas de Liberação de Medicamentos , Pulmão/efeitos dos fármacos , Secagem por Atomização , Células A549 , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Morte Celular/efeitos dos fármacos , Curcumina/farmacocinética , Liberação Controlada de Fármacos , Humanos , Lipossomos , Masculino , Tamanho da Partícula , Poloxâmero/química , Pós , Ratos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
19.
Int J Biol Macromol ; 165(Pt B): 2550-2564, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33115647

RESUMO

Demand for safe, environmentally friendly and minimally processed food additives with intrinsic technological (stabilizing, texturizing, structuring) and functional potential is already on the rise. There are actually several natural excipients eligible for pharmaceutical formulation. Mucilage, as a class constitutes arabinoxylan and rhamnogalacturonan-based biomolecules used in the pharmaceutical, environmental as well as phytoremediation industries owing to its particular structure and properties. These compounds are widely used in pharmaceutical, food and cosmetics, as well as, in agriculture, paper industries. This review emphasizes mucilage valuable applications in the pharmaceutical and industrial fields. In this context, much focus has recently been given to the valorization of mucilage as an ingredient for food or nutraceutical applications. Furthermore, different optimization and extraction techniques are presented to develop better utilization and/or enhanced yield of mucilage. The highlighted mucilage extraction methods warrant assessing up-scale processes to encourage for its industrial applications. The current article capitalizes on cutting-edge characteristics of mucilage and posing for other possible innovative applications in non-food industries. Here, the first holistic overview of mucilage with regards to its physicochemical properties and potential novel usages is presented.


Assuntos
Biodegradação Ambiental , Mucilagem Vegetal/química , Polissacarídeos/química , Xilanos/química , Aditivos Alimentares/química , Aditivos Alimentares/uso terapêutico , Humanos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Mucilagem Vegetal/uso terapêutico , Polissacarídeos/uso terapêutico , Viscosidade , Xilanos/uso terapêutico
20.
Int J Biol Macromol ; 163: 1579-1590, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32755697

RESUMO

Cellulose was and still is the most abundant biopolymer generated from all plant fibers including agricultural wastes. Using this waste as a starting material in the production of new products is a field of great interest. The demand for renewable and available resources in combination with advanced technologies is a necessity to develop new generations of advanced nanomaterials. This review aims to present integrated details on the extraction techniques and structure of nanofibrillated cellulose as well as cellulose nanocrystals derived from agricultural wastes besides the different treatment methods used to be suitable for several pharmaceutical applications. Different pharmaceutical applications are described, including controlled, sustained or rapid drug delivery, stabilizing agent, and its use as safe and sustained environment for cell culture allowing its use in tissue engineering field.


Assuntos
Celulose/química , Nanoestruturas/química , Preparações Farmacêuticas/química , Animais , Biopolímeros/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanotecnologia/métodos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...